
High Performance Tracing Tools for Multicore Linux Hard

Real-Time Systems

Raphaël Beamonte, Francis Giraldeau, Michel Dagenais

École Polytechnique de Montréal

C.P.6079, Station Downtown, Montréal, Québec, Canada, H3C 3A7

{raphael.beamonte,francis.giraldeau,michel.dagenais}@polymtl.ca

October 1, 2012

Abstract

Real-time systems have always been more difficult to monitor and debug because of the real-time
constraints which rule out any tool significantly impacting the system latency and performance. Tracing
is often the most reliable tool available for studying real-time systems. In recent years, the real-time
behavior of Linux systems has greatly improved and, with proper CPU shielding on multicore systems, it
is now possible to have latencies in the low microsecond range. In that context, tracers must ensure that
their overhead is within that range, predictable and scales well to multiple cores.

The recently released LTTng 2.0 toolchain has been optimized for multicore performance, scalability
and flexibility. We have studied its impact on the maximum latency for serving hard real-time applications
in a multicore environment using CPU shielding. In order to achieve this, we used and extended the real
time verification tools cyclictest (from the rt-tests suite), and the hwlat detector module. These tools
were first used to establish the baseline of real-time system performance and then to measure the impact
added by tracing with both LTTng kernel tracing and LTTng user-space tracing (UST). This identified
modifications required to the buffer switch protocol in LTTng-UST, and special care required to isolate
the shielded real-time cores from the RCU interprocess synchronization routines.

This work resulted in extended tools to measure the real-time properties of multicore Linux systems, a
precise characterization of the real-time impact of LTTng kernel and UST tracing tools, and improvements
to LTTng, and its use of RCU, for tracing real-time systems.

It will thus be easier to assess the real-time performance of multicore Linux systems. Moreover, LTTng
will become a tool of choice to study the performance and behavior of such hard real-time multicore
systems, given its small and deterministic impact on the maximum latency.

1 Introduction

Tracing is a method to study runtime behavior of a
program execution. It consists in recording times-
tamped events at key points of the execution. Be-
cause it can be used to measure latency, tracing is
a fundamental tool for debugging and profiling real-
time systems. To be suitable for real-time system in-
strumentation, a tracer must have low-overhead and
consistent maximum latency in order to minimize ex-
ecution timing changes.

The Linux Tracing Toolkit next-generation
(LTTng) is a high performance tracer optimized for
Linux. It supports both kernel and userspace tracing

with coherent timestamps, which allow to observe
system-wide execution. Earlier results for LTTng-
UST show that the maximum tracepoint execution
delay is 300 times the average [1]. Our goal was
to assess the newer version of LTTng-UST 2.0 for
use in real-time system. Our contribution consists in
a methodology to measure LTTng-UST tracepoint
latency characteristics in a real-time environment.
We measured the latency distribution in this real-
time setup and compare it to results obtained on a
regular setup. We developed the Non-Preempt Test
(NPT) tool, to address these specific measurement
requirements. In addition, we propose modifications
to LTTng-UST in order to lower maximum latency

1

and evaluate its effectiveness.

We present related work in section 2. We detail
the test environement and the methodology in sec-
tion 3. Baseline results are shown in section 4 while
results obtained with our proposed improvement to
LTTng-UST are discussed in section 5. Future work
and the conclusion are in section 6.

2 Related work

This section presents the related work in the two
main domains relevant for this paper, real-time sys-
tems and userspace tracing.

2.1 Existing Real-Time validation

tools

To evaluate the real-time properties of the tracer,
timing properties of the test setup must be vali-
dated. It consists in measuring latencies induced by
the hardware and the operating system. We used the
rt-tests suite to perform the validation. In this sec-
tion, the different tools corresponding to our needs
are presented.

Hardware Abnormal hardware latencies can oc-
cur in misconfigured hardware. To measure these,
we used the hwlat detector kernel module [2]. This
module uses the stop machine() kernel call to hog
all of the CPUs during a specified amount of time.
It then polls the CPU timestamp counter (TSC) for
a configurable period and looks for the discrepan-
cies in the TSC data. If there is any gap, it means
that the polling was interrupted which, on the sys-
tem configuration used, could only be an SMI. The
tool hwlatdetect is a python script to simplify the
use of the hwlat detector module.

Software Cyclictest is a tool to verify the software
real-time performance by running multiple processes
on different CPUs, executing a periodic task [3].
Each task can have a different period. The prior-
ity of each process can be set to any value up to
real-time. The performance is evaluated by measur-
ing the discrepancy between the desired period and
the real one.

There exists also the preempt-test tool [4]. This
tool is is not part of the rt-tests suite but was an-
alyzed before the development of the Non-Preempt

Test tool presented in 4.1. It allows to verify if an
higher priority task is able to preempt a lower prior-
ity one by launching threads with increasing priori-
ties. It also measures the time it takes to preempt
lower priority tasks.

2.2 Existing tracers

In this section, we presents characteristics of cur-
rently available tracers.

Some existing implementations of tracers rely
on either blocking system calls, string formatting
or achieve thread-safety by locking the shared re-
sources for concurrent writers. For example, the log-
ging framework Poco::Logger is implemented this
way1. This category of tracer is slow and unscal-
able, and thus is unsuitable for use in real-time and
multi-core environment.

Feather-trace [5] is a low-overhead tracer imple-
mented with thread-safe and wait-free FIFO buffers.
It uses atomic operations to achieve buffer concur-
rency safety. It has been used to analyze locking in
the Linux kernel. However, it do not support variable
event size, since the reservation mechanism is based
on array indexes. Also, the timestamp source is the
gettimeofday() system call, that provides only mi-
croseconds precision instead of nanosecond.

Paradynmodifies binary executables by inserting
calls to tracepoints[6]. The instrumentation can be
done at runtime or using binary rewriting in order
to introduce only a low-overhead. This technique
has been used to monitor malicious code. While
the framework offers extensive API to modify exe-
cutables, it does not include trace buffer manage-
ment, event types definition or trace write mecha-
nisms. Therefore, missing components must be im-
plemented separately.

SystemTap is a monitoring tool for Linux[7]. It
works by dynamically instrumenting the kernel us-
ing KProbes. The instrumentation is done in a spe-
cial scripting language that is compiled to produce
a kernel module. The analysis of the data is bun-
dled inside the instrumentation itself and results are
printed on the console at regular interval. Hence, the
analysis is done in-flight and there are no facilities,
as far as we know, to efficiently serialize raw events
to stable storage.

LTTng-UST provides macros to add statically
compiled tracepoints to a program. Produced events
are consumed by an external process that writes
them to disk. Contrarily to Feather-trace, it sup-

1Poco logging framework web site: http://pocoproject.org/

2

ports arbitrary event types through the Common
Trace Format2. The overall architecture is designed
to deliver extreme performance. It achieves scal-
ability and wait-free properties for event produc-
ers by allocating per-CPU ring-buffers. In addition,
control variables for the ring-buffer are updated by
atomic operations instead of locking. Moreover, im-
portant tracing variables are protected by read-copy
update (RCU) data structures to avoid cache-line ex-
changes between readers occurring with traditional
read-write lock schemes[8]. A similar architecture
is available at the kernel level. Since both kernel
and userspace timestamps use the same clock source,
events across layers can be correlated at the nanosec-
ond scale. The rest of this paper focuses on the
LTTng-UST 2.0 implementation.

Table 1 summarizes the LTTng components ver-
sions used to perform our experiments. The source
code has been downloaded from the git repositories
of project web site3.

Component Git hash version
Userspace RCU e1259cb1

LTTng kernel modules dae90c28
LTTng tools 26c9d55e
LTTng-UST a8909ba5

TABLE 1: Versions of LTTng components
used for the experiment

3 Test environment

We used the tools presented previously to validate
our test setup. The system consists of an Intel R©

CoreTM i7 CPU 920 2,67 GHz, with 6 GB of DDR3
RAM at 1 067 MHz and an Intel DX58SO moth-
erboard. Hyperthreading was disabled as it intro-
duces unpredictable delays withing cores by sharing
resources between threads, both in terms of process-
ing units and in terms of cache. This is something
to avoid in real-time systems.

As expected, running hwlatdetect to verify the
hardware latency did not find any problem; it mea-
sured no latencies for a duration of one hour. Hwlat-
detect often allowed us to find unexpected latencies
on particular setups in our initial studies.

The cyclictest tool was then used to verify the
software latency. Even if the documentation of rt-
tests specifies that cyclictest has been developed pri-
marily to be used in a stressed environment, we
were particularly interested in the verification of the

idle system. Real-time and non-real-time operating
systems shouldn’t have big differences in this case.
We performed the test on the two different kernels
used in the rest of this paper, which are the debian
Linux kernel 3.2.0-3-amd64 (package version 3.2.21-
3), hereinafter refered as standard kernel, and the de-
bian Linux kernel 3.2.0-3-rt-amd64 (package version
3.2.23-1), hereinafter refered as the PREEMPT RT
patched kernel. We choose to do our tests on both of
these kernels to compare the performance of LTTng
in a non-real-time environment versus a hard real-
time one. We also expect that if LTTng is able to
reach very good performance on a non-optimized sys-
tem, it will most likely be able to reach it on a real-
time one.

Table 2 shows the results of the cyclictest exe-
cution on these kernels, performed with command
line arguments -S, to activate the standard options
to test an SMP system, -p99, to set the priority to
real-time, and -l100000, to get a sample for 100 000
cycles.

Latencies in µs

Thread id 0 1 2 3 Kernel
Interval 1000 1500 2000 2500 type

Minimum
1 1 1 1 std
1 1 1 1 rt

Average
2 2 2 2 std
2 2 3 2 rt

Maximum
16 15 25 753 std
7 7 7 9 rt

TABLE 2: Results of the cyclictest execu-
tions performed on our standard (std) and
PREEMPT RT patched (rt) kernels

The results obtained shows latencies up to 25 µs

for three of the four threads for the standard ker-
nel. The fourth shows a latency more than 30 times
higher than the other threads. The results are better
on the PREEMPT RT patched kernel. The maxi-
mum latency reached is 9 µs where it was 753 µs

on the other. We also see that the maximum of the
worse thread of the PREEMPT RT patched kernel
is lower than the lowest maximum of the standard
kernel (almost twice lower). The PREEMPT RT
patched kernel should be able to handle real-time
problems better than the standard kernel.

2Common Trace Format specification repository: git://git.efficios.com/ctf.git
3LTTng git repositories are available on: http://git.lttng.org

3

4 Baseline results

In this part, we present the performance of LTTng
in our test environment. To do so, we first intro-
duce the Non-Preempt Test tool that was developed
for this purpose and then present and discuss our
latency results.

4.1 The Non-Preempt Test tool

One condition we wanted to test was the non preemp-
tion of an high priority process. To do so, we devel-
oped the Non-Preempt Test application, or NPT4.
After setting an ideal environment by disabling IRQ
and locking the process memory into RAM to pre-
vent it from being swapped (with mlockall), the
core of the application is to do loops and calculate the
time gap between the start of two consecutive cycles
using the rdtsc instruction to get the Time Stamp
Counter [9] of the CPU, like the hwlat detector mod-
ule in kernel mode. In an ideal situation, this time
gap will be very short – just the time to execute the
few instructions in each cycle. At the end of its ex-
ecution, NPT computes latencies statistics for each
loops, and an histogram showing the different laten-
cies reached and the number of times each one was
reached. The NPT tool was designed to be executed
in a CPU shielded environment and to be alone on
its CPU. Our configuration for the CPU shielding
puts all the system processes on cpu0 and NPT on
cpu1, as shown in Figure 1.

FIGURE 1: The cpusets organisation for
the running tests

The rdtsc time source is a precise counter and
its frequency is fixed. Even if it is not synchro-
nized between cores, this does not affect our exper-
iment because NPT sets is own CPU affinity (with
sched setaffinity) to be scheduled on the same
CPU at all time. Moreover, this is reinforced by the

CPU shielding. In order to reduce the effect of tran-
sient state, NPT also uses an empty loop to stress the
CPU before getting its frequency as presented in [10].
It allows to remove any effect of the frequency scaling
even if it is not disabled. However, the effect of the
Intel R© Turbo Boost Technology is not managed yet.
We then discard the first five – this number is con-
figurable – iterations of the benchmark. The study
of the pipeline warm-up latency is beyong the scope
of this paper.

This tool is ideal to test the performance of the
kernel and UST LTTng tracers as it is easy to extend
and add tracepoints in the main loop, while identi-
fying any added latency from the tracer, as shown
in Pseudocode 1. The session daemon of LTTng is
put on cpu2 during the tracing tests to be CPU in-
dependent from NPT and the system processes. The
session daemon spawns consumer daemons and thus
they will also run on cpu2.

1: i← 0
2: t0 ← read rdtsc

3: t1 ← t0
4: tracepoint nptstart

5: while i ≤ cycles to do do

6: i← i+ 1
7: duration← (t0 − t1) ∗ cpuPeriod

8: tracepoint nptloop

9: CalculateStatistics(duration)
10: t1 ← t0
11: t0 ← read rdtsc

12: end while

13: tracepoint nptstop

PSEUDOCODE 1: Tracepoints in NPT

4.2 Latency results

Figure 2 presents the histograms generated by NPT
for an execution with 100 000 000 loops without trac-
ing. As we can see, there is no latency peak.

4The Non-Preempt Test tool can be downloaded at http://git.dorsal.polymtl.ca/?p=npt.git

4

 0
 2
 4
 6
 8

 10

 0 1 2 3 4 5 6 7 8 9 10

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

FIGURE 2: Histograms generated by
NPT for 108 cycles on standard and
PREEMPT RT patched kernels

Figures 4, 3 and 5 present the generated his-
tograms for executions of NPT with 100 000 000 cy-
cles with respectively kernel, UST, and kernel and
UST tracers active.

 0
 2
 4
 6
 8

 10

 0 1 2 3 4 5 6 7 8 9 10

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

FIGURE 3: Histograms generated by
NPT for 108 cycles on standard and
PREEMPT RT patched kernels with LTTng
kernel tracing

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

FIGURE 4: Histograms generated by
NPT for 108 cycles on standard and
PREEMPT RT patched kernels with LTTng-
UST tracing

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120 130

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)>
15

0

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

FIGURE 5: Histograms generated by
NPT for 108 cycles on standard and
PREEMPT RT patched kernels with LTTng
kernel and UST tracings

As we can see, the usage of LTTng-UST adds
many non-deterministic peaks to the execution of
NPT, up to 121 µs on the standard kernel and 19 µs

on the PREEMPT RT patched one. On both ker-
nels, using the kernel tracing alone doesn’t seem to
have any impact on the execution of NPT. Latency
peaks show that the impact is more important on
the UST side, maybe because there is an UST tra-
cepoint directly added into the loop. As these peaks
were also visible in the execution of NPT with both
kernel and UST tracers, we used this trace to analyze
the execution of NPT on cpu1. Doing so, we iden-
tified that when the UST implementation was us-
ing the control pipe of the UST consumer to inform
it that the sub-buffer it was feeding was full, even
if the write call was a non-blocking call, a kworker
thread, which has a lower priority, took lead for a
short amount of time before NPT returned back to
its execution.

5 Reducing maximum latency

The results presented in the previous section led us
to modify LTTng-UST to create a test version in
which the synchronization between the application
and the consumer is removed. Instead of using the
kernel polling call, we changed it to active polling
for the sake of this experimentation. Using active
polling, the consumer will continuously try to empty
the buffers and thus run at 100% of the CPU, but

5

with our shielded environment, it should not have
any impact on the NPT execution. For its part, the
application will not contact the consumer anymore
to inform it of the sub-buffers state.

This LTTng-UST version is still in prototyping
phase but already shows promising results at this
state of development. Figures 6 and 7 show the dif-
ference of added latencies between the original and
the modified version of LTTng-UST on a standard
and a PREEMPT RT patched kernel respectively.

 0
 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70 80 90 100 110 120

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Original LTTng UST

Modified LTTng UST

FIGURE 6: Histograms generated by NPT
for 108 cycles on a standard kernel with orig-
inal and modified LTTng-UST tracing

 0
 2
 4
 6
 8

 10

 0 2 4 6 8 10 12 14 16 18 20 22

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Original LTTng UST

Modified LTTng UST

FIGURE 7: Histograms generated by NPT
for 108 cycles on a PREEMPT RT patched
kernel with original and modified LTTng-UST
tracing

On the standard kernel, the maximum latency
is lowered from 121 µs to 8 µs, where on the
PREEMPT RT patched kernel, it is lowered from
19 µs to 7 µs. If we compare the results of the modi-
fied LTTng-UST on both kernels in Figure 8, we can
see that, contrary to the original LTTng-UST results
shown in Figure 4, these are much more constant.

 0
 2
 4
 6
 8

 10

 0 1 2 3 4 5 6 7 8 9 10

101
102
103
104
105
106
107
108
109

C
yc

le
s

nu
m

be
r

Latency (µs)

Standard Linux kernel

Linux kernel with PREEMPT_RT patch

FIGURE 8: Histograms generated by
NPT for 108 cycles on standard and
PREEMPT RT patched kernels with modified
LTTng-UST tracing

Moreover, Table 3 shows the statistics obtained
from the execution of NPT for the original and mod-
ified version of LTTng for comparison purposes. We
can see that even if the minimum and the mean dura-
tions are higher with our modified version, the max-
imum duration, the variance and the standard de-
viation, which are the most important values in a
real-time system, are lower.

Latencies in ns

Kernel std rt
LTTng orig mod orig mod
Minimum 287 270 289 452
Mean 317 381 322 466
Maximum 121744 8 104 19 837 7 312

Variance 74,778 0,321 1,813 0,438
Deviation 273 17,92 42,58 20,94

TABLE 3: Statistics per cycles, in nanosec-
onds, generated by NPT on both standard (std)
and PREEMPT RT patched (rt) kernels for
both the original (orig) and modified (mod)
versions of LTTng-UST

6 Conclusion and Future Work

We have presented the effects of tracing with LTTng
on both standard and PREEMPT RT patched ker-
nels by using the Non-Preempt Test (NPT) appli-
cation. We changed the way the userspace instru-
mented application interacts with LTTng userspace
tracer (UST) to reduce and improve the determin-
ism of the added latency. Our results are promising
and show that we are in the right direction as the

6

maximum latencies are within 8 µs for the standard
kernel and 7 µs for the PREEMPT RT patched one,
but we believe there is still room for improvement.

We believe that LTTng has great potential in
tracing real-time systems. Therefore, we are viewing
the real-time work described in this paper as the be-
ginning of a large project in which collaborations and
contributions are welcome. We intend to finish the
implementation of our modified LTTng-UST version,
to pursue our investigations to find if we can lower
the LTTng latency, and then integrate our changes
upstream. The latest version of NPT can be obtained
from http://git.dorsal.polymtl.ca/?=npt.git.

7 Acknowledgments

The authors are grateful to Yannick Brosseau,
Matthew Khouzam, Mathieu Desnoyers and
Geneviève Bastien for the reviews, useful comments,
and help to work on the project. This research is
supported by OPAL-RT, CAEm the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) and the Consortium for Research and In-
novation in Aerospace in Québec (CRIAQ).

References

[1] M. Desnoyers and M.R. Dagenais. The
LTTng tracer: A low impact performance and
behavior monitor for GNU/Linux. In Linux
Symposium, Ottawa, Ontario, Canada, June
2006.

[2] Documentation/hwlat detector.txt, in
the PREEMPT RT patch. Available:
http://kernel.org/pub/linux/kernel/projects/rt/.

[3] RT Wiki. Cyclictest [online]. Available:
https://rt.wiki.kernel.org/index.php/Cyclictest
(consulted on Oct., 1st 2012). May 2012.

[4] RT Wiki. Preemption Test [online]. Available:
https://rt.wiki.kernel.org/index.php/Preemption Test
(consulted on Oct., 1st 2012). May 2012.

[5] B. Brandenburg and J. Anderson. Feather-
Trace: A lightweight event tracing toolkit. In
Proceedings of the Third International Work-
shop on Operating Systems Platforms for Em-
bedded Real-Time Applications, pp. 19-28,
2007.

[6] A.R. Bernat and B.P. Miller. Anywhere,
any-time binary instrumentation. In Proceed-
ings of the 10th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software
tools, pp. 9-16, 2011.

[7] F.C. Eigler and R. Hat. Problem solving with
systemtap. In Proceedings of the Ottawa Linux
Symposium, 2006.

[8] M. Desnoyers, P.E. McKenney, A.S. Stern,
M.R. Dagenais and J. Walpole. User-Level
Implementations of Read-Copy-Update. In Par-
allel and Distributed Systems, IEEE Transac-
tions on, vol. 23, num. 2, pp. 375382, 2012.

[9] Intel R© 64 and IA-32 Architectures Software De-
veloper’s Manual, Intel Corporation, De-
cember 2009, 253669-033US

[10] Aby Thankashan. High Performance Time
Measurement in Linux [online]. Available:
http://aufather.wordpress.com/2010/09/08/high-
performance-time-measuremen-in-linux/ (con-
sulted on Oct., 1st 2012). Sept. 2010.

7

